哨兵小说 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

两人到门卫那里借来一辆手推车,在车上放了四个空的水桶,然后推着车来到老化学楼。

这里有一个专门的水龙头,流出来的直接就是去离子水。

路上,许秋好奇问道:

“我用了这么久的去离子水,还不知道它和蒸馏水有什么区别呢。”

“主要是制备方法上的不同,”陈婉清道:

“去离子水的话,首先需要通过石英砂过滤颗粒较粗的杂质,然后将其高压通过反渗透膜,最后还要经过紫外杀菌以去除水中的微生物。

假如此时电阻率还没有达到纯水的要求,可以再进行一次离子交换过程,其电阻率可达到18兆欧姆厘米以上。

相对而言,蒸馏水只是先气化再冷凝,其电阻率一般没有去离子水高,因此半导体工业中用的大多数是高纯度的去离子水。”

……

两人将去离子水运送回实验室。

由于吴菲菲还在使用蒸镀设备,所以现在不能往储水舱中加水。

许秋将去离子水和修好的循环水系统复制到了模拟实验室中,再次检查了一遍,没有发现异常。

“学姐,我们该做正事了,”许秋道:

“来讨论合成给体材料的事情吧。”

“对哦,明天还要作报告呢。”陈婉清道:

“那你先来简单介绍一下有机光伏材料的发展史吧,我正好也能检验一下你的文献阅读情况。”

许秋坚持每天阅读文献1小时已经超过两个月了,连暑假都没有停下。

所以他信心满满道:

“有机光伏材料,也就是用于电池器件的有效层材料,分为给体和受体两种。

它们最初是被称为电子给体和电子受体的,后来,人们为了书写和交流方便,将‘电子’两个字省略了。

在受到光照后,给体材料发生光电反应,生成激子,即电子-空穴对,激子在给受体的界面处拆分为自由电子和空穴。

接着,自由电子从给体转移到受体上,相当于给体材料给出电子,这也是电子给体这个名称的由来。

在内建电场的作用下,电子经由受体材料,传输到电极负极,空穴则经由给体材料,传输到电极正极,电池正负极之间形成电势差。

当电池外接有负载时,便形成了光电流。”

“原理部分基本正确,继续吧。”陈婉清赞许道。

“受体材料的研究进展较为缓慢。”许秋道:

“最早用的是富勒烯C-60,到现在,被广为使用的受体材料仍然是富勒烯的衍生物PCBM。

唯一的改进就是,原先的C-60不能溶于有机溶剂,所以需要蒸镀到器件上,而PCBM可以与给体材料共混,一同旋涂。

当然,研究者们也开发了其他受体材料,比如苝二酰亚胺的衍生物等等,但效率一直做不高,难以突破10%。

而近年来,给体材料取得了很大的突破,研究空间很大。

学姐是不是因为这个原因,才选择做给体材料的呢?”

“没错,研究空间大,就意味着好发文章,”陈婉清倒是大方承认。

“你继续说吧,别打岔了。”

“聚合物给体材料,整体上可以分为三代。”许秋道:

“最开始是聚对苯乙烯,PPV的衍生物,后来是经典的聚3-己基噻吩,P3HT,现在则是以PTB7-TH为代表的D-A共聚物。

聚合物是由一个或多个结构单元重复连接的大分子,相对分子质量通常在1万以上。

PPV、P3HT都是均聚物,顾名思义,就是只有一个结构单元的聚合物。

而第三代兴起的D-A共聚物,就是由两个结构单元D单元和A单元聚合而成。

因为D、A单元种类繁多,这使得第三代给体材的料数量也急剧膨胀起来。”

“是啊,”陈婉清接过话茬:

“其中大部分给体材料的光电性能都不怎么样,所以就只能发在二三四区期刊灌灌水。

像是PTB7-TH等性能优异的材料,还能发在《自然》的大子刊,比如《自然·光学》上。

但目前最高12%左右的效率还是不够看,想要登顶《自然》主刊基本上不可能。

我觉得主要原因在于这些都是基于PCBM受体的体系。

而这个体系有个很大的问题,就是PCBM它几乎不吸收可见光,因此太阳光的透射损失非常大。

我觉得有机光伏领域未来的出路,就在于合成一种新的高性能受体,取代并推翻PCBM常年的垄断地位。

当然,这些都是之后的事情了,我们还是先考虑眼前吧。

我来讲讲我的思路。”

“之前我只是和魏老师学习过合成方法,用的是比较便宜的原料,实验操作倒是都学会了。

但是合成新材料的话,实验条件肯定会变化,还是要重新摸索。

所以我打算先找已经报道过的两种高性能的D-A聚合物。

将它们在分子级别上共混,做个三元的聚合物,比如我用三种结构单元D、A1、A2进行聚合。”

“学姐,你等下,你这个想法我听着怎么这么耳熟呢?”许秋想了想,说道:

“这不就是学姐的上一篇文章的思路吗,只是这次改成了用三种单元合成一种给体材料了。”

陈婉清笑了笑,没有正面答复,而是抛出一个问题:

“学弟,你有合成经验吗?”

“没有。”许秋摇摇头。

“你知道怎么样改进聚合物分子的主链,才能使之性能提高吗?”

“不太清楚。”

“你知道支链对分子性能的影响有哪些吗?”

“结晶性能?”

“答的不全面,其实包括溶解性、结晶性能、能级结构,甚至光吸收性能等等,都会有影响。”陈婉清道:

“但是,就算我知道会有哪些影响,也只是从其他人的文献上知道的,这种经验终究不是自己的。

让我设计一种新的分子结构,就像是探索一个新领域,这是需要勇气的,也是需要能力的。

我可不想花费大量的时间,结果啥都做不出来,所以我才选择了比较稳妥的,好出文章的实验思路。

毕竟一入合成深似海呀,实验周期长,动辄好几个月,而且不做到最后根本不知道结果如何,我怕我文章发不够,毕业难啊。

倒是学弟时间充裕,可以选择挑战一下。

怎么样,有没有什么想法。”

“有。”许秋道。

“还真有啊,说来听听。”

喜欢我有科研辅助系统请大家收藏:(www.shaobingxs.com)我有科研辅助系统哨兵小说更新速度全网最快。

哨兵小说推荐阅读: 市井之辈配音天王全球高武宇宙交易系统女神的上门豪婿重生:回到1991当首富我的1990不想继承千亿家产钓鱼直播间神级美食主播大小姐的御用占星师都市绝品仙帝都市:走错厕所,觉醒入梦系统豪门天医我不是超级警察万界随机购物系统解锁娱乐时代失忆之王全球直播之超凡探索开局顶流的我怎么会糊重生之我真没想当渣男我的女皇上司天才神医混都市医生从开挂开始我的系统被女友抢了都市最佳豪婿从情满四合院开始穿越世界树:异生签到三年:七十二天后世界末日重生九四之商业大亨超强兵王在都市系统之乡土懒人出狱后的彪悍人生开局签到四合院都市之绝世剑仙田园牧场桃运医神和女总裁荒野求生的日子都市:开局狂怼变形节目游戏开发狂神直播:道长别装了,你就是在修仙头狼重生我真没想当暖男从拍情景喜剧开始崛起吧!聊天群都市之战神荣耀不当小明星都市无敌医神镇世战神乡村护花医圣
哨兵小说搜藏榜: 贩罪神豪从眼睛变异开始重生逆流崛起巨星从演太监开始都市之风水相师随意飘摇仙医高手在花都我真没想当名人啊大亨万岁超级黄金戒高考后就成为了神豪大佬超级杀手俏佳人狗子是重生者,我能听到它的心声我穿越进女上司小说里了无尽重生录修行在上火锅大明星我真没想做时代大亨都市医道狂仙至尊战神奶爸都市之绝代神帝sorry!有钱真能为所欲为辣手狂医重生之地府归来迷情美女总监被校花看上之后女神的贴身邪医兄弟恩怨都市魔戒从求职节目走出的天王巨星女镇长的战神赘婿鉴宝神医开局无敌签到亿点修为开局落魄,一首新歌播放破亿四合院里走出的首富香江大亨传奇都市玄婿大婚之夜,老婆画皮,我推门就打我是亿万总裁超念觉醒仙道霸主在都市金融巨人之再活一次最强狂少重生之沸腾青春重生之燃烧吧青春学霸终结者我真是来交换的五百个郭靖捐了集团,打造国产神话!我在现代当扫地人
哨兵小说最新小说: 地窟求生:开局食物增幅三十倍再启仙途热搜第一:叫你捡漏你开挂啊四合院里的老中医汽车公司?不,是国货之光我写的娱乐文被杨老板看到了百元求生:从潘家园捡漏开始浪在娱乐圈怪物食堂四合院里的唯一老实人首富后才知是反派我靠吹牛发家致富韩娱之kpopstar我的金融帝国文娱:让你唱歌,你搁这作法?带着爸妈去上班娱乐:别联系了,真不熟回到过去当女神放弃留学,我打造了世界第一名校从重生开始合租重生之娱乐风暴我的夫妻关系竟能数据化硅谷大帝平行空间超级武圣超级囚徒泡个美女老总做老婆混世穷小子万能小道士护花神偷都市高手墙头有杏绝品小农民都市无敌特种兵重生之绝世猛男冰帝校园行翡翠王超级帅哥超级特种兵乾哥传奇爷们巨枭极道特种兵都市逍遥神十二生肖守护神极品调教美女老总爱上我都市公子天才神医异能高手